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Abstract
This paper examines the applications most commonly run on the supercomputers at

the Numerical Aerospace Simulation (NAS) facility. It analyzes the extent to which such
applications are fundamentally oriented to vector computers, and whether or not they can
be e�ciently implemented on hierarchical memory machines, such as systems with cache
memories and highly parallel, distributed memory systems.
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1. Introduction
The usefulness of traditional vector computers for the solution of the discretized equa-

tions governing viscous, compressible (and incompressible) 
uid 
ow has been demon-
strated rather convincingly by the success of codes like OVERFLOW and INS3D on vector
supercomputers, such as the Cray C90 and T90. These programs combine the numerical
e�ciency of implicit solution algorithms (which permit large time steps) with the compu-
tational e�ciency of regular grids and easily exploited vector parallelism. But should they
always be run on vector machines? Are there some inherent features of these applications
that make them poorly suited for other architectures, notably hierarchical or non-uniform
memory access (NUMA) systems? In the following, we will consider distributed memory
parallel systems as another form of NUMA system.

Before examining this question, it is good to keep in mind that there are a number of
distinct, numerically e�cient algorithms available for the solution of equations of interest
to NASA and the community it serves. Not all of them are implicit schemes. Explicit
schemes, which are usually quite well suited for NUMA systems, may be acceptable for
some applications. Other types of algorithms, such as multigrid, may be used as well. Thus
the question at hand is whether or not, for certain important classes of applications, all
known numerically e�cient algorithms have a strong preference for one type of architecture
or another.

Some important factors governing the e�ciency of a particular scienti�c application on
a particular system include

� Spatial locality, such as the presence of nonunit strides.

� Temporal locality, such as the number of operations performed per memory access.

� Regularity of memory accesses, such as whether or not strides are constant.

� Data dependencies, such as recurrences.

� Loop vector lengths.

� Complexity of inner loops.

� Operation mix ratios.

These factors are related to certain characteristics typical of many modern computer ar-
chitectures. These characteristics in turn stem from a fundamental challenge in all modern
computer architectures: dealing with the latency between processors and main memory.

Vector processors attempt to ameliorate this latency by working with long streams of
regularly spaced data. In this way, after the penalty of latency is paid for the �rst element,
the remaining data elements can be loaded, and possibly processed and stored as well, at a
rate of up to one per clock period. Vector systems typically have di�culties with data that
is spaced with power-of-two strides (since such strides result in repeated accesses of the
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same memory banks), highly memory intensive applications (since in such cases memory
bank collisions with other processors are frequent), as well as with shorter loops and, of
course, loops with recursions or other features that inhibit vector processing.

Computers with hierarchical memory systems attempt to deal with latency by employ-
ing a hierarchy of storage systems (with main memory as one of the higher levels) which
attempts to exploit data locality in the computation by keeping frequently used data close
to the processor. Hierarchical and NUMA systems have di�culties with non-unit stride
data (since only one or a few elements are used from each block of main memory fetched
to cache). These di�culties are ampli�ed if strides are certain particular values, usually
powers of two (since these may result in repeated access of the same cache lines, as well
as problems in the translation look-aside (TLB) bu�er). Even with loops featuring stride
one data access, performance on a cache-based may be sub-optimal if each data element
fetched from main memory is used only once.

The question is this: do these architectural di�erences also distinguish fundamentally
algorithms that can be implemented e�ciently on these systems? Are some algorithms
fundamentally better suited for one type of architecture than another? Here we will in-
vestigate these issues for the kind of problems that NASA faces in large-scale 3D CFD
simulations.

2. Alternating Direction Implicit (ADI) Schemes
Let us �rst examine the Alternating-Direction Implicit (ADI) technique used in OVER-

FLOW. It comes in two 
avors, namely a block tridiagonal (BT) and a scalar pentadiagonal
(SP) form (more about this distinction later). For both SP and BT there are three inde-
pendent families of equations to be solved, each corresponding to a particular coordinate
direction. These families are called factors. Each factor requires the solution of a large set
of (again independent) linear equations, one for each grid line. Within a grid line a certain
data dependence is incurred. If we solve in the y-direction with j as a running index, we
have to solve for point j-1 before point j can be visited. This seems to be a problem; it
is natural to view each grid line as an independent task that needs to be �nished before
moving on to the next line.

But if arrays are stored as u(i,j,k), for example, than for the solves in the y-direction
the second index will change fastest, resulting in a memory stride the size of the �rst (x)
grid dimension. This will be unfavorable for a cache-based system, since it is likely that
only one data element per cache line is used. However, this is an artifact of the seeming
indivisibility of the line solves. Since all y-line equation systems are independent, we can
solve for all the �rst points (j=k=1, with i as a running index) of each y-line before moving
to the next point. In other words, we can always code a loop that implements an ADI-
like data dependence in a cache-favorable way, with i as the inner loop index (provided
multi-dimensional arrays are stored in column major order, as in Fortran).

Here is a simple but illustrative example. Assume that the line solve in the y-direction
consists of adding each previous value at point j-1 to that of point j, in other wordsu(i,j,k)
= u(i,j,k) + u(i,j-1,k). The \natural" code for this operation is something like
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do k = 1, kmax

do i = 1, imax

do j = 2, jmax ! the line solve starts here

u(i,j,k) = u(i,j,k) + u(i,j-1,k)

enddo ! the line solve ends here

enddo

enddo

A cache-friendly version of this code is

do k = 1, kmax

do j = 2, jmax ! the line solves in the i,j-plane start here

do i = 1, imax

u(i,j,k) = u(i,j,k) + u(i,j-1,k)

enddo

enddo ! the line solves in the i,j-plane end here

enddo

Evidently, the recurrence imposed by the ADI scheme along grid lines did not lead
to an unfavorable data access pattern, because there was enough parallelism in the other
coordinate directions. Notice that the second code fragment also vectorizes well, since all
inner iterations are independent. Ironically, on a vector machine the canonical implemen-
tation of the x-factor does not perform well, because it exhibits a recurrence in the inner
loop:

do k = 1, kmax

do j = 1, jmax

do i = 2, imax ! the line solve starts here

u(i,j,k) = u(i,j,k) + u(i-1,j,k)

enddo ! the line solve ends here

enddo

enddo

Again, there is no inherent problem. Advanced vector compilers can easily recognize
that a simple loop index interchange (i<->j) will make the inner loop vectorizable again.
This has been observed in the SP benchmark from the new NAS Parallel Benchmarks suite
(NPB-2), which implements the essentials of the diagonalized Beam-Warming version of
OVERFLOW. When compiled on the NASA Ames Cray C90 using the currently available
Cray Fortran-90 compiler, this code vectorizes completely, despite the presence of these
inner loop recurrences. Of course, if a compiler does not automatically recognize the
opportunity for loop interchange, such a change can easily be done by hand or by using a
preprocessor tool.

Thus we conclude that on single-processor systems there is no natural preference of the
ADI algorithm for vector over cache-based systems. Further, there are now parallel ADI
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algorithms of su�cient sophistication to limit the data transfer between processors to an
acceptable minimum (e.g. the multi-partition method [5, 6]) on most scalable machines.
The major part of the performance degradation of the NPB2 SP code on systems like the
CRAY T3D or IBM SP2, as the number of processors grows, is attributable to the degra-
dation of performance on individual nodes, not to the communication overhead, except
when the number of nodes is very large compared to the grid size.

Most NUMA machines exhibit better performance on the BT benchmark from the
NPB-2 than they do on the SP benchmark. This is because the BT benchmark (and most
BT-derived application codes) solves for each grid point a 5�5 dense system of equations as
part of the overall block-tridiagonal line solve. Dense matrix computations have excellent
data reuse, meaning not only that all data elements in each cache line are used (this has
to do with a good data access pattern), but also that several computations per element
are performed on a datum once it is placed in a CPU register. This is much less the case
in SP, which does not solve dense systems. The situation is reversed for vector machines:
here SP does best (440 M
op/s on one processor of a Cray C90), because it vectorizes well
and the line solve loops are fairly \thin" (not too many instructions, constants and arrays
in the loops, so that there are always enough vector registers). BT, by contrast, achieves
\only" 260 M
op/s on a C90 processor. The code still vectorizes well, but since the inner
5 � 5 loops are unrolled (partly to pre-empt the possible vectorization of these very short
loops, and partly to remove inner loop recurrences), the loops are very \fat", resulting in
register allocation problems.

In summary, there do not appear to be any compelling preferences for either vector or
NUMA computers when implementing ADI-type algorithms.

3. Gauss-Seidel Schemes
Another important CFD production code at NASA Ames is INS3D. It can be run

with several di�erent kernel solution algorithms. There are two that employ approxi-
mate factorizations based on a spectral decomposition of the 
ux Jacobians, resulting in
three-factor lower-diagonal-upper schemes, which are applied in a symmetric double-sweep
fashion (LU-SGS). The resulting data dependencies are equivalent to point- and line-Gauss-
Seidel, respectively; in the forward sweep, no point (i,j,k) may be updated before all
points with smaller or equal indices have been updated. Interestingly, even though in the
point-relaxation mode the updates take place on a point-by-point basis, the data depen-
dency makes vectorization hard. There is no way that a triple \Cartesian" loop (loop
bounds independent of other loop indices) can be written that does not have a recursion
in the inner loop. This gave rise to the skewed-hyperplane approach, in which points are
updated simultaneously and independently on planes of constant i+j+k. Notice that in-
tersections of such skewed planes with a grid are not of constant size, and hence vector
lengths vary widely.

By contrast, a cache-based implementation, for which recursions are acceptable, can
be coded in a completely straightforward fashion, using simple Cartesian loops. Again,
the loop nests can be arranged in a way that preserves data locality. This can even

5



be accomplished to a reasonable degree on a distributed memory machine, through the
use of a generalized two-dimensional pipeline, as is evidenced by the NPB-2 LU code.
Not surprisingly, this code does not fare well on vector machines. And a vector-based
code does not perform well on a cache-based machine, because the strides along skewed
hyperplanes are too large. So even though the INS3D scheme in the relaxation mode is
not fundamentally unsuited for either vector or NUMA computer, it does seem not easy
to write a single code that does well on both types of architectures.

4. Krylov Schemes
A relatively new feature of INS3D is the implementation of a Krylov subspace method

(GMRES, in this case) for the solution of the linear systems. This solver can be im-
plemented e�ciently on both vector and NUMA computers, since it does not feature the
complicated recurrences of the relaxation mode solvers. The most important operations are
the formation of regular, ultra-sparse matrix-vector products (to compute residuals) and
of dot products. On distributed memory systems, this requires mostly nearest-neighbor
communications, as opposed to, for example, the conjugate gradient problem in the NPB-2
suite, which features general, randomly �lled sparse matrices.

5. Unstructured Grid Methods
Unstructured-grid 
ow solvers are usually one of two types: cell-center schemes and

cell-vertex schemes. In both two and three dimensions, the major computational e�ort is
associated with the calculation of the numerical 
uxes. In two dimensions, both schemes
require nearly equal computational e�ort. Time evolution of explicit methods is performed
on a control volume basis. The �nite elements are the control volumes for the cell-center
schemes. For the cell-vertex schemes, the control volumes are non-overlaping polyhedral
regions (in three dimensions) surrounding the vertices of the mesh and can be obtained
from the dual of the computational mesh.

Since the number of triangles is approximately twice the number of vertices, cell-center
schemes require slightly more computation. In three dimensions, the number of 
ux calcu-
lations is proportional to the number of faces in the mesh for the cell-center schemes and
to the number of edges for the cell-vertex scheme. Since the number of faces is usually
about twice the number of edges, the 
ux computation is signi�cantly more expensive for
cell-center schemes. The computational e�ort associated with explicit time stepping also
favors cell-vertex schemes since the number of tetrahedral elements is typically about �ve
times the number of vertices.

Both cell-center and cell-vertex schemes run into similar problems when implemented
on vector and NUMA computers. For example, for cell-vertex schemes, the computation of
the 
uxes across the faces of the control volumes is carried out by summing the contribution
from each edge in the mesh. For vectorization, the edges need to be properly \colored"
so that the inner do loop ranges over edges of the same \color" (in order to avoid race
conditions with array data). However, for each edge, its two end-points need to be accessed.
This requires indirect addressing. Similar problems are encountered for cell-center schemes.
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The above discussion assumes an explicit method; implicit methods for these problems are
still in an early stage of development, and will not be discussed here.

As a result of the requirement for indirect addressing, stencil operations cannot be done
with �xed (or even predictable) stride, and memory access is rather erratic and usually
not very favorable for cache-based systems. On the other hand, because most of the
addressing of grid elements takes place through indirect referencing (arrays of indices), it
is di�cult on vector machines to assemble vectors e�ciently. So here it appears that the
implementations on vector and NUMA computers are relatively ine�cient on both types
of systems. In short, there is again no compelling argument that this type of algorithm
fundamentally prefers one architecture over the other.

5. Fast Fourier Transforms
Fast Fourier transforms (FFTs) are utilized by several types of computations, notably

large eddy simulations and direct simulations of turbulence. FFTs are also involved in the
FT benchmark of the NPB (and NPB-2) suite, wherein a large 3-D FFT is used to solve
a Poisson PDE problem.

It is well known that 3-D FFTs can be implemented easily on a vector system, simply
by performing vectors of 1-D FFTs in the �rst dimension, followed by vectors of 1-D FFTs
in the second dimension, and then the third dimension. For power-of-two FFTs (by far
the most commonly utilized size), a naive implementation will result in severely reduced
performance due to power-of-two memory strides (due to bank con
icts). However, such
di�culties are relatively easily ameliorated by simply padding the dimensions of the 3-D
arrays to be, say, one larger than a power of two. In this way, vector fetches in all three
dimensions will be with favorable strides.

On a cache-based or NUMA system, the large strides involved in the second and third
dimension data accesses will sharply reduce performance. Power-of-two FFTs are even
more troublesome, due to cache line and TLB con
icts, which are the cache system equiv-
alent of vector bank con
icts. However, these power-of-two di�culties can be avoided by
padding the 3-D arrays as above, although the size of the optimal pad is typically di�er-
ent on cache systems than for vector systems (a good coding practice is to use a settable
parameter for this purpose). Nonetheless, the large strides remain a problem.

The typical solution of the large strides in 3-D FFTs is to employ at least one ar-
ray transposition. In the case of a distributed memory system, substantial interprocessor
bandwidth is required for this operation, but existing commerical highly parallel systems
appear to feature su�cient bandwidth to permit such transpositions (\complete exchange"
operations) to be performed without dominating the total computational cost. With array
transposition, all of the actual computational steps involve only memory resident (usually
cache-resident) data. One can usually employ highly optimized vendor-supplied library
routines to perform the resulting 1-D FFTs. The library routine for the IBM 590 worksta-
tion, for example, runs at approximately 220 M
op/s, which is 80% of the theoretical peak.
Some RISC vendors support e�cient 2-D and 3-D FFT library routines as well, although
FFT support among distributed memory vendors is still weak due to the lack of standards.
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The case of large 1-D FFTs is interesting in this regard, even though such FFTs are
generally not used in CFD calculations (they are however a staple of the digital signal
processing world). Again, e�cient schemes for large 1-D FFTs on vector systems have
been known for some time [2], but these usually involved large strides and disparate array
accesses, which are not favorable on cache-based and distributed memory systems. A few
years ago, researchers found a scheme to perform large 1-D FFTs that in e�ect converts
the problem to a 2-D FFT, which can then be solved as described above (usually with
array transpositions) [2]. In fact, it was later realized that this scheme had actually been
presented in one of the earliest FFT papers [4]. Thus this scheme is not \new" | it has
been in the literature longer than e�cient FFT schemes for vector systems.

In summary, FFT codes written for vector systems in most cases cannot be super�cially
converted to e�cient cache-based or NUMA FFT codes. However, e�cient FFT schemes
are known for these other architectures, and it is possible to construct FFT-based codes
that run e�ciently on a wide variety of architectures, requiring custom tuning only for array
transposition operations. But there appears to be no fundamental architectural preference
one way or the other for performing large 1-D, 2-D or 3-D FFTs.

6. Array Transpositions
As mentioned in the previous sections, array transpositions are used in FFT applica-

tions, particularly on cache-based and distributed memory systems. Along this line, it is
worthwhile to mention a straightforward scheme for array transpositions that appears to
be relatively e�cient on a wide variety of systems. We will describe it here for the case of
a 2-D matrix:

Consider �rst the case where n1 = n2, so that the matrix is square. In that case a
block interchange technique can be used to transpose the array in a single pass, in place.
This can be done by simply considering the external n1 � n2 matrix to be decomposed
into square blocks of size b on a side, where b is the block size of an e�cient read/write
memory operation. The square blocks down the diagonal can be transposed simply by
fetching the blocks one at a time into main memory, transposing them using any e�cient
main memory scheme, and storing the resulting matrices back in the same locations. The
o�-diagonal square blocks can be fetched in opposing pairs, transposed in main memory,
and then stored back in opposite locations. One di�culty in applying this scheme is when
the main memory block size b is a power of two (which it almost always is). Transposing
matrices whose dimensions are powers of two in main memory, using the straightforward
scheme, results in memory bank con
icts on vector computers and cache line con
icts on
cache-based systems. But such con
icts can be avoided by padding the �rst dimension of
the scratch array as mentioned above.

For the common case of power-of-two FFTs, it can be assumed that either n1 = n2 or
else n1 = 2n2. In the second case, it does not appear possible to transpose the array in one
pass, in place, using only full block I/O transfers. However, such arrays can be transposed
in just two passes, in place, using only full block transfers, as follows. First, consider the
n1�n2 external array as two blocks of size n2�n2, and transpose each of these two square
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blocks in place, as described in the previous paragraph. This completes the �rst pass. Now
consider the resulting data array in external memory to be a n2 � n1 matrix. Inspection
of an example shows that the columns of the resulting array need to be de-interleaved:
column 2j; 0 � j < n2 needs to be moved to column j, and column 2j + 1 needs to be
moved to column j+n2 (here the columns are numbered beginning with zero). When this
de-interleaving is performed, the transposition is complete.

It should be emphasized that array transpositions are in fact a potentially very powerful
tool for large 2-D and 3-D computations from a variety of disciplines. This is because array
transpositions, in e�ect, convert multi-dimensional array accesses, which are fatal to the
performance of many cache-based and distributed memory architectures, into contiguous
data accesses, which are ideal for vector, cache-based and distributed memory systems. In
other words, a typical 3-D application whose implementation for a vector system involves
array accesses in all three dimensions may be performed in six steps, as follows:

1. Perform computations in the �rst (contiguous) dimension.

2. Transpose the array so that the second dimension is now the contiguous dimension.

3. Perform computations in the second (now contiguous) dimension.

4. Transpose the array so that the third dimension is now the contiguous dimension.

5. Perform computations in the third (now contiguous) dimension.

6. Transpose the array back to the original dimension ordering.

In many or even most cases, other schemes may be preferable for a particular appli-
cation. But the point here is that this transposition scheme is generally applicable | it
is an \existence proof" of sorts that multi-dimensional array calculations can always be
localized. Further, array transpositions are \latency tolerant". This feature may be very
important on future very highly distributed systems, such as the peta
ops systems now on
the drawing boards. Closer to the present, such schemes may enable certain large 3-D phys-
ical simulations to be performed with reasonable e�ciency on networks of workstations,
where latency is often unavoidably large.

It is also worth nothing that while e�cient transpositions require fairly high data com-
munications bandwidth, especially on distributed memory systems, this is something that
can in principle be provided in a good design. By contrast, providing low latency appears
to be increasingly di�cult, since semiconductor memory devices are not improving greatly
in operation speed, while processors continue to advance fairly aggressively in performance.
Thus the disparity in performance between processors and memory is destined to grow even
more acute in the future. Indeed, the challenge of managing latency is likely to dominate
future design, both in hardware and software [3].

7. Conclusions
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In this paper, we have reviewed only a few applications, namely those of most interest
to scientists using the Numerical Aerospace Simulation (NAS) supercomputers. These ap-
plications include the key CFD solution schemes (mostly implicit), as well as some other
methods widely used in aeronautical computation. It appears from our experience, includ-
ing the experience of implementing the NAS Parallel Benchmarks on various architectures,
that these computations can be e�ciently implemented on both vector and cache-based
or NUMA systems (including distributed memory, highly parallel systems). We see no
fundamental architectural preference one way or the other.
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